
ButtonShield Datasheet Revision A
1

Typical Applications:

• Keyboard Simulation
• Physical Computing
• Display Input Control

Product Features:

• 30 General Purpose Buttons
• 2 Steady State Buttons
• 1 Lock Switch

• 1 Steady State Space Switch
• 2 Operating Modes
• Back Light Control

ButtonShield

ButtonShield Datasheet Revision A
2

Contents

1. Functional Description
2. Pin Description
3. Button Mapping
4. Back Light Control
5. Test Code
6. Firmware Theory

1. Functional Description

The ButtonShield provides the Arduino access to 30 buttons, 3 steady state
general purpose buttons, and a user-controllable back light LED.

An A/B Mode selection switch changes the Arduino occupied pins. This mode
selection allows two ButtonShields to be mounted on a single Arduino via an
ExtenderShield, preventing signal collision on the same pin.

2. Pin Description

The ButtonShield has two operating modes: “Mode A” and “Mode B” (see table in
Section 2, “Pin Description”). These Modes are controlled by a switch located on
the bottom of the shield, identified by the red circle in the figure below.

ButtonShield Datasheet Revision A
3

The ButtonShield relays button information along 6 different pins. Each button in
a given mode is represented by a 6-digit binary value, with each digit transmitted
along a single pin. A 6-digit binary value allows for a total of 64 different values
to be passed to the Arduino in this fashion.

3. Button Mapping

There are a total of 64 different numbers the ButtonShield can send to the
Arduino. The button in the bottom left corner is the Lock button. When this
button is pressed, it acts similarly to a “Caps Lock” key on a key board.

Figure 1

The Lock Button (circled in red)

When the Lock button (“L”)
isn’t pressed, the
ButtonShield is in normal
mode. The two LEDs next
to the Lock button will be off
when the ButtonShield isn’t
in Lock mode. The diagram
on the left illustrates the
number sent to the Arduino
when the button is pressed.

ButtonShield Datasheet Revision A
4

If the Lock (“L”) button is pressed, and the Lock LEDs are illuminated, the
ButtonShield is in Lock mode. In Lock mode, most buttons are shifted up by 30.
The buttons that are excluded are 61, 62, and 63; these buttons will send the
same number to the Arduino regardless of whether Lock mode is on. The
diagram on the left illustrates the numbers sent to the Arduino when Lock mode

is on, and the respective button
is pressed.

Figure 2
Lock Mode On

ButtonShield Datasheet Revision A
5

4. Back Light Control

An LED is attached to the bottom of the Shield. The LED will turn on, when the
switch on the bottom is flipped.

Figure 3

Back Light LED

Figure 4

Back Light Control Switch

ButtonShield Datasheet Revision A
6

5. Arduino Test Code

The ButtonShield Library is available in the Aardvark IDE:
Mac OS X: http://www.liquidware.com/apps/show/49
Windows: http://www.liquidware.com/apps/show/43

//Uploaded this to an Arduino and run the serial monitor.

#include < ButtonShield.h >

ButtonShield buttonsA = ButtonShield(0); /* Created a new ButtonShield
on Mode A */
ButtonShield buttonsB = ButtonShield(1); /* Created a new ButtonShield
on Mode A */

void setup()
{
Serial.begin(9600);
}

void loop()
{
Serial.print("ModeA: ");
Serial.print(buttonsA.readButtons());
Serial.print(" ModeB: ");
Serial.print(buttonsB.readButtons());
}

The Arduino Library code is opensource and shared on github:
www.github.com
liquidware / antipasto_arduino / hardware / libraries / ButtonShield

6. Firmware Theory

The ButtonShield is powered by an ATmega645 processor.

If you describe the Buttons as a big array, then you can easily scan through the
entire list. Here is snippet of the ButtonShield 'core' code.

/*===
=========
 * CONSTANTS

*==
======*/

/* The user pin lookup table.
 This table provides a mapping to the ButtonShield hardware pins. */

ButtonShield Datasheet Revision A
7

PIN_DESC_T const pinTable[] = {

 /* 0 */ { &PORTA, 0, &PINA, &DDRA }, //not a button

 /* 1 */ { &PORTA, 5, &PINA, &DDRA }, //the top left button
 /* 2 */ { &PORTA, 6, &PINA, &DDRA },
 /* 3 */ { &PORTE, 3, &PINE, &DDRE },
 /* 4 */ { &PORTE, 4, &PINE, &DDRE },
 /* 5 */ { &PORTD, 3, &PIND, &DDRD },
 /* 6 */ { &PORTB, 5, &PINB, &DDRB },
 /* 7 */ { &PORTD, 7, &PIND, &DDRD },
 /* 8 */ { &PORTD, 0, &PIND, &DDRD },

 /* 9 */ { &PORTA, 4, &PINA, &DDRA },
 /* 10 */ { &PORTC, 7, &PINC, &DDRC },
 /* 11 */ { &PORTE, 2, &PINE, &DDRE },
 /* 12 */ { &PORTE, 7, &PINE, &DDRE },
 /* 13 */ { &PORTD, 6, &PIND, &DDRD },
...
};

Now with your table, you can easily index through a huge list of Buttons and set
them all to inputs in a few lines of code, for example like this:

for(pin=1;pin<36;pin++) // loop that sets pins 1 to 36 as inputs
 {
 pinMode(pin, INPUT); //sets the pin as an input pin on the
buttonshield
 digitalWrite(pin, HIGH); //sets the input to be high by default
(enable internal pull up resistor)
 }

To poll the Button inputs again, scan through the entire PinTable[] in a for()
loop, ditching out when you've found a pressed button.

That's your foundPin

Using the foundPin id, the ButtonShield directly writes to 6 Arduino input pins, or
'bits' if you'd like to think about it that way. Like this:

/* Write the button value onto the Arduino pins */
 for(i=0;i<6;i++)
 {
 digitalWrite((i+kArduinoPinsOffset), foundPin&1);
 foundPin = foundPin>>1;
 }

